The Polymer Physics of DNA

Giovanni Dietler,

Laboratoire de Physique de la Matière Vivante, Institut de Physique des Systèmes Biologiques EPFL, CH-1015 Lausanne, Switzerland

giovanni.dietler@epfl.ch

In order to perform its tasks, the cell uses

Sequence

Elastic properties

Topological properties

Statistical properties

and tons of other properties ,
of DNA

Classification Physics Abstracts 05.40 — 64.75 — 82.70

Ring polymers in solution : topological effects

J. des Cloizeaux

Service de Physique Théorique, CEN-Saclay, Boîte Postale nº 2, 91190 Gif sur Yvette, France

(Reçu le 1er juin 1981, accepté le 19 août 1981)

Résumé. — On étudie les effets de contraintes topologiques sur les propriétés d'anneaux polymères en solution. Quand les anneaux sont courts et rigides, la nature de ces effets peut être aisément comprise et un résultat simple est donné ici. Quand les anneaux sont longs et flexibles, la situation est complexe et une analyse plus subtile est nécessaire. Heureusement des études mathématiques récentes concernant le nombre d'enlacements de deux courbes conduisent à un résultat significatif. Cette information permet de développer des arguments montrant que les contraintes topologiques produisent essentiellement un accroissement de l'interaction locale de volume exclu; cet effet topologique pourrait donc être pris en compte dans le cadre des théories actuelles.

Abstract. — The effect of topological constraints on the properties of ring polymers in solution are studied. When the rings are short and rigid, the effects can easily be understood and a simple result is given here. When the rings are long and flexible, the situation is complex and a more subtle analysis is needed. Fortunately recent mathematical studies concerning the linking numbers of two curves lead to a significant result. This information is used to argue that the topological constraints produce essentially an increase of the local excluded volume interaction; this topological effect could therefore be taken into account within the framework of current theories.

Classification Physics Abstracts 05.40 — 64.75 — 82.70

Ring polymers in solution : topological effects

J. des Cloizeaux

Service de Physique Théorique, CEN-Saclay, Boîte Postale nº 2, 91190 Gif sur Yvette, France

(Reçu le 1er juin 1981, accepté le 19 août 1981)

Résur Topological constraints produce essentially an increase Quan of the local excluded volume interaction

nécessaire. Heureusement des études mathématiques récentes concernant le nombre d'enlacements de deux courbes conduisent à un résultat significatif. Cette information permet de développer des arguments montrant que les contraintes topologiques produisent essentiellement un accroissement de l'interaction locale de volume exclu; cet effet topologique pourrait donc être pris en compte dans le cadre des théories actuelles.

Abstract. — The effect of topological constraints on the properties of ring polymers in solution are studied. When the rings are short and rigid, the effects can easily be understood and a simple result is given here. When the rings are long and flexible, the situation is complex and a more subtle analysis is needed. Fortunately recent mathematical studies concerning the linking numbers of two curves lead to a significant result. This information is used to argue that the topological constraints produce essentially an increase of the local excluded volume interaction; this topological effect could therefore be taken into account within the framework of current theories.

DNA is a Self-Avoiding Walk(SAW)

Good Solvent Conditions

SAW

Random Walk (RW)

SAW in plane - 1,000,000 steps

Random Walk

Self-Avoiding Walk

Universality		Theoretical	Physical	Order
Class		Model	System	Parameter
d=2	n=1	Ising Model in	Adsorbed Films	Surface
		two dimen.	A Start Barrier	Density
	n=2	XY Model in	Helium-4 films	Amplitude of
	2.00	two dimen.		superfluid
				phase
	n=3	Heisenberg		Magnetization
		Model in two		
		dimen.		
d>2	n=∞	"Spherical"	None	
1220		Model		
d=3	n=0	Self-Avoiding	Conformation of	Density of
		random walk	long polymers	chain ends
	n=1	Ising Model in 3	Uniaxial	Magnetization
		dimen.	ferromagnet	
			Fluid near a	Density
			critical point	difference
				between
				phases
		1	Mixture of	Concentration
2.163			fluids near a	difference
			consolute point	
			Alloys near a	Concentration
de la la			order-disorder	difference
			transition	
	n=2	XY Model in 3	Planar	Magnetization
		dimen.	ferromagnet	
			Helium-4 near	Amplitude of
			superfluid	the superfluid
			transition	phase
	n=3	Heisenberg	Isotropic	Magnetization
		model in 3	terromagnet	
		dimen.		
d>=4	n=-2		none	
	n=32	Quantum	Quarks bound	
		chromodynamics	in protons, etc	

Universality and Universality Classes: behavior depends only from d and n

$$d = 1; v = 1.00; \xi = \xi_o L$$

$$d = 2; v = 0.75; \xi = \xi_o L^{0.750}$$

$$d = 3; v = 0.588; \xi = \xi_o L^{0.588}$$

from K. Wilson, 1974

This power law behavior is very similar to critical phenomena near a second order phase transition:

i) gas-liquid phase transition
ii) ferromagnet
phase separation
of binary solutions

DNA in a Thermal Bath

DNA in a Thermal Bath

Length Scale	Elastic Constants	Temperature
Short (< ℓ_p)	Stiff (E big)	T = 0 K
Medium (~ ℓ_p)	Semiflexible	T > 0 K
Large (>> ℓ_p)	Very flexible	T >> 0 K

Persistence Length $\ell_p = \frac{EI}{k_B T}$

Methods:

Imaging of DNA by Atomic Force Microscopy

Tracing the DNA molecules

Statistical Properties in 2 D:

End-to-End Distance

Correlation Function

Distributions

Tuesday, May 24, 2011

• DNA deposition on mica in MgCl₂ solution

• Technique ensures 2D equilibration of DNA

Tuesday, May 24, 2011

• DNA deposition on mica in MgCl₂ solution

• DNA deposition on mica in MgCl₂ solution

• DNA deposition on mica in MgCl₂ solution

• DNA deposition on mica in MgCl₂ solution

• DNA deposition on mica in MgCl₂ solution

• Technique ensures 2D equilibration of DNA

Molecular paths extracted from images

Deposition Ma²⁺ or "G

APTES

Mg²⁺ or "GM"

Deposition

APTES

Mg²⁺ or "GM"

Trapping

Strong interaction DNA-surface $U_{int} >> k_B T$

Tuesday, May 24, 2011

Trapping

Equilibration

Strong interaction DNA-surface $U_{int} >> k_B T$

Weak interaction DNA-surface $U_{int} \leq k_B T$

Deposition

Mg²⁺ or "GM"

Trapping

Equilibration

Strong interaction DNA-surface $U_{int} >> k_B T$

Weak interaction DNA-surface $U_{int} \leq k_B T$

Deposition

Mg²⁺ or "GM"

Trapping

Equilibration

Strong interaction DNA-surface $U_{int} >> k_B T$

Weak interaction DNA-surface $U_{int} \leq k_B T$

Strong vs Weak Absorption

Formation of positive supercoils at real time using Liquid TM-AFM in pBR322 (negavtive supercoiled DNA)

Tuesday, May 24, 2011

Strong vs Weak Absorption

Trapping Strong interaction DNA-surface

 $U_{int} >> k_B T$

Equilibration Weak interaction DNA-surface $U_{int} \leq k_B T$

Formation of positive supercoils at real time using Liquid TM-AFM in pBR322 (negavtive supercoiled DNA)

Tuesday, May 24, 2011

Tuesday, May 24, 2011

Distribution Functions
Distribution Functions

Perfectly rigid polymer of total length l_o

l_o

Distribution Functions

Distribution Functions

Previous Results on Linear DNA

$$\xi = \xi_o \left(\frac{L}{l_o} \right)^{\nu_1} \left(1 + \frac{L}{l_o} \right)^{\nu_2 - \nu}$$

Trapping Strong interaction DNA-surface U_{int}>>k_BT

[Valle, Favre, De Los Rios, Rosa and Dietler, PRL, **95** 158105 (2005)]

Circular dsDNA in 2D

Witz et al., PRL, 101, (2008) 148103.

Shape of ring polymers

230 nm ring

2 microns ring

- Short rings adopt elliptical shapes, with a breathing movement. No SAW effects
- Long rings are also clearly elliptical. SAW effects appear

- SAW effects appear in the semiflexible regime
- Good agreement between numerical and experimental data

Drube F., Alim K., Witz G., Dietler, G. and Frey E., Nano Lett. 10, 1445-1449 (2010)

Weak Adsorption: 2D Knots

Unknot

Weak adsorption					
	d_f	$ u = 1/d_f$			
Unknots	1.491 ± 0.037	0.670 ± 0.017			
Simple knots	1.530 ± 0.065	0.654 ± 0.028			
Complex knots	1.541 ± 0.086	0.650 ± 0.036			

Ercolini et al., PRL, 98, 058102 (2007)

Witz G., Rechendorff, K., Adamcik, J. and Dietler, G., PRL, to appear.

 Polymer confinement generally studied by fluorescence microscopy
 AFM offers much higher resolution

Witz G., Rechendorff, K., Adamcik, J. and Dietler, G., PRL, to appear.

 Polymer confinement generally studied by fluorescence microscopy
 AFM offers much higher resolution

Witz G., Rechendorff, K., Adamcik, J. and Dietler, G., PRL, to appear.

 Polymer confinement generally studied by fluorescence microscopy
 AFM offers much higher resolution

Witz G., Rechendorff, K., Adamcik, J. and Dietler, G., PRL, to appear.

 Polymer confinement generally studied by fluorescence microscopy
 AFM offers much higher resolution

 Polymer confinement generally studied by fluorescence microscopy
 AFM offers much higher resolution

Experimental system close to ideal
 2D polymer confinement

The Gauss Integral and the control of gene expression

DNA Model

DNA base pairs

3 DNA base pairs code for one amino acid in a protein

UUU Phe	UCU Ser	UAU Tyr	UGU	Cys
UUC Phe	UCC Ser	UAC Tyr	UGC	Cys
UUA Leu	UCA Ser	UAA Stp, GIn ³	UGA	Stp,Trp ^{4,5} ,Cys ⁶ ,SeC ⁷
UUG Leu	UCG Ser	UAG Stp, GIn ³	UGG	Trp
CUU Leu	CCU Pro	CAU His	CGU	Arg
CUC Leu	CCC Pro	CAC His	CGC	Arg
CUA Leu	CCA Pro	CAA GIn	CGA	Arg
CUG Leu, Ser ¹	CCG Pro	CAG GIn	CGG	Arg, Usp ⁸
AUU Ile	ACU Thr	AAU Asn	AGU	Ser
AUC Ile	ACC Thr	AAC Asn	AGC	Ser
AUA Ile, Usp ²	ACA Thr	AAA Lys	AGA	Arg, Usp ⁹
AUG Met	ACG Thr	AAG Lys	AGG	Arg
GUU Val	GCU Ala	GAU Asp	GGU	Gly
GUC Val	GCC Ala	GAC Asp	GGC	Gly
GUA Val	GCA Ala Res ¹⁰	GAA Glu	GGA	Gly
GUG Val	GCG Ala	GAG Glu	GGG	Gly

The cells use this codons to synthetize the proteins

Wine Protein

1. Denaturation temperature is 70 C!

I. Denaturation temperature is 70 C!

2. How life can work at 37 C?

I. Denaturation temperature is 70 C!

2. How life can work at 37 C?

3. Did Nature a mistake?

Here topology and the Calugareanu-White-Fuller Theorem comes into play

Lk(R) = Tw(R) + Wr(R)

Lk = Linking Number

Tw = Twist

Wr = Writhe

The Gauss-Integral & the linking number of two curves

Biot-Savart's Law + Ampère's Law $Lk(C_1, C_2) = \frac{1}{4\pi} \oint_{C_2} \oint_{C_1} \frac{(\vec{r_1} - \vec{r_2}) \times d\vec{r_1} \cdot d\vec{r_2}}{|\vec{r_1} - \vec{r_2}|^3}$ $B(r_2)$ C_2 Current CI Loop r_2 $I(r_{\tau})$

Biot-Savart's Law + Ampère's Law $Lk(C_1, C_2) = 3 \times 2 = 6$

DNA double helix

 $Lk(C_1, C_2) = Tw = \frac{N_{base \ pairs}}{10.4}$

```
Lk(C_1, C_2) = Tw
= 2686/10.4 = 258
```

Topology of DNA

Ideal B-form DNA (here 10.4 bp/turn) Underwound DNA (here 11.4 bp/turn)

Topology of DNA

Torsion or Bending?

Topology of DNA

Torsion or Bending?

Relaxation of torsional stress

Here topology and the Calugareanu-White-Fuller Theorem comes into play Lk(R) = Tw(R) + Wr(R)Tw=8 Tw=7 Wr=-1 Wr=0

Illustration of the conservation of Lk

Viglasky et al., Electrophoresis, 24, 1703 (2003)

Effect of supercoiling

pUC19 2686 bp= 878 nm

Tw=258
Conservation of the linking number B-Form DNA of pUC19 = relaxed DNA -- Tw= 258 But Nature has chosen Lk = 242 (-6%) Calugareanu-White-Fuller : Lk = Tw + Wr Lk = 242 = 258 + Wr - Wr = -16

> Tw=258; Wr=-16 Mostly bending energy

Tw=242; Wr=0 A lot of torsional energy

Conservation of the linking number

Tw=242; Wr=0 A lot of torsional energy

Tw=258; Wr=-16

Mostly bending energy

Experiments with pUC19

Theoretical prediction (R. Metzler)

 $b(Wr) = -\frac{Nl_s}{Lk_0}|Wr| + |\sigma|Nl_s - \frac{l_d l_s N^3}{4\pi^2 C_{tw} Lk_0^2}\overline{\varepsilon}$

pUC19 (2686 bp)

Distribution of Bubble Lengths for a Mixture of Topoisomers

Topoisomers Distribution for PM2 Plasmid (9850 bp)

Why only one bubble?

What happen if the temperature is raised?

The opening of the double helix will be promoted!

How will the cell react?

Temperature dependence of the linking number

Adamcik et la., Electrophoresis, 23, 3300 (2002)

Collaborators & etc

- Francesco Valle, ISMN CNR, Bologna, Italy
- Mélanie Favre, CSEM, Neuchâtel
- Jozef Adamcik, ETHZ
- Erika Ercolini, Trieste, Italy
- Guillaume Witz, EPFL
- Kristian Rechendorff, EPFL
- Paolo De Los Rios, EPFL
- Ralf Metzler, TU Munich, Germany
- Joaquim Roca, Barcelona, Spain
- Andrzej Stasiak, Uni Lausanne
- Erwin Frey, LMU, Munich, Germany
- Cristian Micheletti, SISSA, Trieste, Italy
- Enzo Orlandini, Univ. Padova, Italy

Support:

Swiss National Science Foundation, Carlsberg

- Bertrand Duplantier, CEA & Ecole Polytechnique, Paris, France
- Hirofumi Wada, Kyoto University, Kyoto
- Takahiro Sakaue, Kyushu University, Fukuoka, Japan

