The X-Ray View of Magnetism

Hermann A. Dürr

SLAC National Accelerator Laboratory Stanford University

X-Rays Access the Ultra Small and Ultra Fast

The X-Ray View of Magnetism

The Ultra Small

The Ultra Fast

The Ultra Small & Ultra Fast

The X-Ray Revolution

The development of x-ray sources easily outpaces the growth of the semiconductor and magnetic storage technology

Major Synchrotron Radiation Facilities Around the World

The power of conventional synchrotron radiation

- high average intensity
- variable cross section
 & sample penetration
- element & chemical state specificity
- charge versus spin sensitivity through polarization
- spatial resolution down to atomic size
- temporal resolution to ~ 50 ps

The power of conventional synchrotron radiation

Intensity limited by independent photon emission – scales as $N_{\rm e}$

The power of conventional synchrotron radiation

View of the BESSY II experimental hall with 46 beamlines in operation in 2004

many simultaneous experiments

Concept of a free electron x-ray laser

- Replace storage ring by a linear accelerator allows compression of electron bunch use once, then throw away
- Send electron bunch through a very long undulator

Linac Coherent Light Source or "LCLS" at SLAC the world's first x-ray laser

- X-rays for atomic resolution
- ultrafast flash to study processes with femtosecond duration
- ultrabright flash
- increased coherence to study disordered system without lenses
- ... but only one experiment at a time

132 meters of FEL undulators

LCLS lases at 1.5 Å

- Typical x-ray beam energy > 1 mJ or > 10¹² photons per pulse
- Typical x-ray pulse duration at 300pC charge ~ 100 fs (FWHM).
- X-ray pulse duration at 20 pC charge < **10 fs**

The X-Ray View of Magnetism

The Ultra Small

The Ultra Fast

The Ultra Small & Ultra Fast

Magnetism in a Nutshell

long-range ferromagnetic order exchange interaction

magnetic anisotropy is caused by spin-orbit coupling & crystalline field

X-Ray Magnetic Circular Dichroism

Thole, Carra, Sette, van der Laan, Phys. Rev. Lett. **68,** 1943 (1992) Carra, Thole, Altarelli, Wang, Phys. Rev. Lett. **70,** 694 (1993)

Imaging Nanoscale Magnetism

Spatial resolution presently 20 - 40 nm

Magnetic switching by spin injection

Y. Acremann (ETH Zurich)

Movie of Magnetization

The X-Ray View of Magnetism

The Ultra Small

The Ultra Fast

The Ultra Small & Ultra Fast

Can we speed up and simplify magnetic switching?

Control Energy and Angular Momentum in Magnetic Materials

laser excitation increases electron temperatures > 1000 K

Rhie, Dürr, Eberhardt, PRL **90**, 247201 (2003); Dürr, NIM (2009)

Control Energy and Angular Momentum in Magnetic Materials

conserve total angular momentum

 $J = S_e + L_e + L(lattice) + L(photon)$

Angular Momentum Probed With X-Rays

The BESSY Femtosecond Slicing Facility

The BESSY Femtosecond Slicing Facility

'Standard' model of fs magnetism

3d transition metals

Koopmans et al., Nature Materials (2009)

'Standard' model of fs magnetism & its experimental test

'Standard' model of fs magnetism & its experimental test

'Standard' model of fs magnetism & its experimental test

time delay (ps)

Koopmans et al., Nature Materials (2009)

Wietstruk, Durr, Bovensiepen, et al., PRL (2011)

Combine 3d and 4f spins and something surprising happens ...

... all optical switching

Fs Control of Exchange Coupling

I. Radu, K. Vahaplar, C. Stamm, T. Kachel, N. Pontius, H. A. Dürr, T. A. Ostler, J. Barker, R. F. L. Evans, R. W. Chantrell, A. Tsukamoto, A. Itoh, A. Kirilyuk, Th. Rasing, A. V. Kimel, Nature (2011)

Summary: optical control of fs magnetism

The X-Ray View of Magnetism

The Ultra Small

The Ultra Fast

The Ultra Small & Ultra Fast

Can we image magnetic bits with one XFEL pulse ?

Femtosecond Magnetic Imaging @ LCLS

we built & operate a holography & coherent scattering endstation for LCLS and SSRL

instrument responsible: A. Scherz

SIMES—Stanford Institute for Materials & Energy Research A Joint Institute of SLAC Photon Science and Stanford University

Fourier Transform Holography

- Detectors record intensity \rightarrow Phase information is lost.
- With FTH, reference holes encode phase information in the diffraction.

Eisebitt et al, Nature (2004)

Single Shot Magnetic Imaging @ LCLS

ed

reference

holes

LCLS

80 fs x-ray pulses multiple-shot image reconstruction of the initial magnetic configuration

> one of the single shot diffraction patterns

sample layout

----- 800nm Au holography mask

100nm SiN layer
55nm CoPd layer

Side view

1.5 µm aperture

FFT images to be published

Office of Science

NATIONAL ACCELERATOR LABORATORY

Acknowledgements

SIMES

Florian Kronast Christian Stamm Marko Wietstruk Niko Pontius Torsten Kachel Rolf Mitzner Torsten Quast Karsten Holldack Emad Azi Wolfgang Eberhardt HZ Berlin	Mohamed Sultan Uwe Bovensiepen Alexei Melnikov	Duisburg-Essen FU Berlin	llie Radu, Kadir Vahaplar, Andrei Kirilyuk, Theo Rasing Alexei Kimel T. A. Ostler, J. Barker, R. F. L. Evans, R. W. Chantrell	
	Cornelius Gahl Martin Weinelt Nina Friedenberge Katarina Ollefs, M.ichaelFarle	MBI Berlin er, Uni Duisburg		Nijmegen York
Andreas Scherz SLAC Dave Bernstein Benny Wu Dilling Zhu	SXR Commisioni Phil Heimann	ng Team ALS	A. Tsukamoto, A. Itoh Tokyo	
Tianhan Wang Roopali Kukreja Björn Bräuer Joachim Stöhr	Stefan Moeller Flo Sorgenfrei Oleg Krupin	DESY LCLS	Jan Luning Richard Mattana Nicolas Jaouen	U Paris THALES
Bill Schlotter LCLS	Gerhard Gruebel	DESY	Horia Popescu Eric Beaurepaire	IPCMS
Joshua Turner Michael Holmes Greg Hays Phillipe Hering Marc Messerschmidt	Sooheyong Lee Leonard Mueller Chrisitan Gutt Stefan Eisebitt Jyoti Mohanty	ΓU Berlin	Boris Vodungbo Valerie Halte V. Lopez-Flores Christine Boeglin Jean Yves Bigot	d'a b a
Chang-Ming Tsai	Stefan Heinze Torbjörn Rander		Anna Barszcak Sar	ENSTRA
	Yves Acremann E	TH Zurich	Franck Fortuna	CNRS

H. A. Dürr, Zurich 2011