SPECTROSCOPY OF PHOTOSYNTHETIC PIGMENT-PROTEIN COMPLEX LHCII

States 6

Wiesław I. Gruszecki Department of Biophysics, Institute of Physics, Maria Curie-Sklodowska University, Lublin, Poland

our Team

onika Zubik

Małgosia Gospodarek

Wojtek Grudziński

Ignacy Gryczynski

Karol Gryczynski

Outline:

1. What is LHCII?

2. Why study LHCII?

3. Spectroscopy of LHCII

Photodegradation

Illumination during a day

Whole plants

Oxalis oregana

Excitation quenching

Fluorescence spectroscopy of

LHCII

Absorption spectra of pigments bound to LHCII

Fluorescence lifetime chlorophyll *a* in LHCII

FLIM single molecule of LHCII

Ex 470 nm

Ex 635 nm

W.I. Gruszecki et al., J. Plant Physiol. 167 (2010) 69-73.

FLIM single molecule of LHCII

W.I. Gruszecki et al., J. Plant Physiol. 167 (2010) 69-73.

FLIM single LHCII trimer

Ex 470 nm

Ex 635 nm

W.I. Gruszecki et al., J. Plant Physiol. 167 (2010) 69-73.

Fluorescence spectra of single LHCII particles

Molecular mechanisms

Raman spectroscopy of LHCII

Pigment absorption spectra

Neoxanthin 488 nm * Violaxanthin 492 nm Lutein 489 nm Lutein 495 nm

according to R. Croce et al., Photosynth. Res. 64 (2000) 221-231.

Raman spectra of carotenoids

Carotenoid fluorescence in LHCII

W.I. Gruszecki et al., J. Phys. Chem. B 113 (2009) 2506-2512.

Molecular mechanisms

FTIR spectroscopy

of LHCII

Protein structure

 α -helix

Blue-light-induced reorganization of LHCII

FLIM LHCII aggregated structures

Ex 470 nm Ex 635 nm

Conclusions:

1. Illumination of LHCII drives molecular configuration changes of xanthophylls

2. Xanthophyll configuration changes drive reorganization of LHCII

3. Reorganization of LHCII leads to excitation quenching

Thank you for attention!