

X-ray optics from the macro- to the nano-world

Jürgen Härtwig

European Synchrotron Radiation Facility, BP 220, 38043 Grenoble Cedex, France

haertwig@esrf.fr

Outline

- 1.Introduction
- 2.Beam dimensions
- 3. Crystalline materials for X-ray optics
- 4. Monochromators
- 5. Collimation, focussing, magnification

Acknowledgements

Colleagues from the X-ray optics group: Ray Barrett, Christian Morawe, Anatoly Snigirev

Colleagues from other groups/beamlines: Elodie Boller, Peter Cloetens, Jean Susini, Paul Tafforeau, Lin Zhang, ...

SR Sources Worldwide Courtesy of APS/ANL website

Worldwide more than 50 SR and XFEL facilities,

European Synchrotron Radiation Facility Grenoble, France

only multi-national source

One of the three (older) <u>high-energy</u> SR sources in the world ESRF - 6GeV, APS - 7GeV, SPring8 - 8GeV fourth (new) one - PETRA III - 6GeV, Hamburg

> classical "medium" energy facilities - 2.5GeV to 3.5GeV

A light for Science

European Synchrotron Radiation Facility

 1975 Project of a European third-generation synchrotron source

- 1988 Signature between the governments of 12 Member States.
- 1992 First electron beam in the storage ring. Commissioning phase.

 1994 User operations with 15 beamlines

- **1998** 40 beamlines
 - **2008** Upgrade Programme 2008–2017

Members and Scientific Associates

ght for Science

Contribution to ESRF budget (and share of beam time)

France	27.5%
Germany	25.5%
Italy	15%
UK	14%
Belgium/Netherlands	6%
Spain	4%
Switzerland	4%
Denmark/Norway/	4%
Sweden/Finland	
	4000/

<u>100%</u>

Annual budget ~82 M€

Associated Countries	5.05%
Portugal	1%
Israel	1%
Austria	1%
Poland	1%
Centralsync	1.05%
(Hungary, Czech Republic, S	Slovakia)

We are a user facility In 2008 About: 2000 submitted proposals 900 proposals allocated beamtime 31100 shifts (8h) of beamtime requested by applicants 13900 shifts allocated after peer review 17000 shifts scheduled for user experiments 6200 number of user visits

A light for Science

The ESRF Upgrade Programme

Enabling long beamlines

A Light for Science

X-ray optics

Tasks:

To transform the beam to obtain the best matching with the experiment - from source to sample to detector.

It acts on:

- shape
- wavelength/energy
- divergence
- polarisation

- slits, pinholes
- filters, windows
- mirrors
- monochromators (crystals, multilayers)
- beam splitters (crystal monochrom.)
- lenses (CRLs), Fresnel zone plates
- combined elements (ML gratings,

Bragg-Fresnel lenses)

phase plates (crystals)

Few years ago - micro-beams were modern,

now - nano-beams are in vogue.

But - we need all kind of beams:

large beams (decimetre sized) and small ones (nanometre sized),

"parallel", divergent and focussed beams.

Nearly 4 orders of magnitude in dimension Without scanning Without magnification

Multi scale experiments!

Example of effective pixel sizes

of the FReLoN cameras used for

parallel beam imaging in the X-ray imaging group

280nm to 30µm

2 orders of magnitude

FReLoN camera			Optics (µm)							Scan			
			0.28	0.7	1.4	2.8	5.06	5.4	7.5	8.06	20	30	Size
		ID19	ID19	ID19	Pool	ID19	BM05	ID19	ID17	ID19	ID19		
0	no binning	Pixel size (µm)	0.28	0.70	1.40	2.80	5.06	5.40	7.46	8.06	20.00	29.47	13 Go
2k14	no binning	Field of view (mm)	0.57	1.43	2.87	5.73	10.36	11.06	15.28	16.51	40.00*	40.00*	(1500 views)
14 µm	binning	Pixel size (µm)	0.56	1.40	2.80	5.60	10.12	10.80	14.92	16.12	40.00	58.94	2 Go
	Dimining	Field of view (mm)	0.57	1.43	2.87	5.73	10.36	11.06	15.28	16.51	40.00*	40.00*	(900 views)
			High res	solution	microton	nograph	N	ledium R	esolutio	n microt	omograp	h	
							*Limited by ID19 beam s				beam si	ze	

Some properties of crystalline materials for X-ray optics

Ce

Material	Be	C*	Si	Ge
Atomic number, A	4	6	14	32
Integrated reflectivity 111-reflection, 8 keV	2.0	6.3	8.2	18.0
Absorption coefficient, μ, at 8keV (cm ⁻¹)	1.8	7.5	141	402
Thermal conductivity, κ, at 297K, (Wcm ⁻¹ K ⁻¹)	1.9	I: 5-18 IIa: 23 Isotop. pure: 35	1.5	0.64
Thermal expansion coefficient, α, at 297K, (10 ⁻⁶ K ⁻¹)	7.7	1.1	2.4	5.6
Figure-of-merit, κ/μ/α, at 297K, (kW)	140	2780	4.4	2.8

ES ES

A light for Science

Crystal laboratory:

Manufacturing of nearly all perfect crystal monochromators & analysers, etc for all ESRF beam lines, CRG beamlines and external laboratories.

Most crystals are made from top purity silicon float zone ingots 100 mm in diameter (Wacker).

More than 1.5 tons of silicon single crystal material has been processed in about twenty years.

Example manufacturing crystal monochromators and analysers

What is now available and used for which applications					
p-CVD diamond	filters, windows				
nc-diamond	(coming up)				
sc-CVD diamond	detectors, maybe phase plates, not (yet) for monochromators				
HPHT, type Ib	used for, but problematic as beam splitters, monochromators; lower quality phase plates				
HPHT - type IIa	highest quality!, monochromators, beam splitters, high-quality phase plates; substrates for better CVD growth to have better layers for detector applications				

Paul Balog/Element Six

110-oriented plate

11.3×6.5×0.70

With crossed polarisers

Dislocation free areas of 6x4mm² and more!!!

Locally crystal quality close to that of silicon, quantitatively confirmed by double crystal topography

White beam topograph in transmission

Increasing strain sensitivity

light for Science

X-ray topographs taken with a non-dispersive setup collected with the bendable monochromator. Bragg case. Left: working point on the steeper low angle side of the rocking curve. Right: working point on the less steep high angle side.

A light for Science

Quantitative analysis basing on one topograph

110-oriented crystal plate

effective misorientation map based on one topograph

20keV, Si [880] *C** [660], δθ > 8 · 10⁻⁹

The effective misorientation is of the order of 4×10^{-8} for a region of interest of 0.5×0.5 mm² and 1×10^{-7} in a region of 1×1 mm²

Similar like in 100-plate Sample is slightly bent!

European Synchrotron Radiation Facility

Ch. Morawe

Pink beam setups for absorbing samples

Simplest "monochromator" – no monochromator

but using only: filters, source spectrum, scintillator screen response spectrum

BM05 data

The European Light Source

European Synchrotron Radiation Facility

Pink beam setups for absorbing samples

BM05 with scans performed in 3-4 minutes in high energy pink beam. For the phone and the meter, the energy was around 70 keV and for the knife, it was around 140 keV.

BM05 data

The European Light Source

Pink beam setups for absorbing samples

BM05 with scans performed in 3-4 minutes in high energy pink beam. For the phone and the meter, the energy was around 70 keV and for the knife, it was around 140 keV.

European Synchrotron Radiation Facility

The European Light Source

BM05 data

ID18 ESRF

High-resolution optics for Nuclear Resonance Scattering

Θ _{in} = 3.9°
$\Theta_{out} = 33^{\circ}$
angular acceptance
∆Ω _{in} = 23 μrad
$\Delta \Omega_{out}$ = 3 μ rad
footprint: 9 mm

Si(400) $\Theta_{\rm B} = 18.469^{\circ}$ asymmetry: |b| = 0.13 $\Theta_{\rm in} = 3.9^{\circ}$ $\Theta_{\rm out} = 33^{\circ}$ angular acceptances: $\Delta\Omega_{\rm in} = 23 \ \mu rad$ footprint: 71 mm

Si(12 2 2) $\Theta_B = 77.533^\circ$ asymmetry: |b| = 25 $\Theta_{in} = 25.9^\circ$ $\Theta_{out} = 1.0^\circ (\Theta_c = 0.125^\circ)$ angular acceptances: $\Delta\Omega_{in} = 0.45 \ \mu rad$ $\Delta\Omega_{out} = 11 \ \mu rad$ footprint: 88 mm

Si(12 2 2) $\Theta_{B} = 77.533^{\circ}$ asymmetry: |b| = 5 $\Theta_{in} = 30.8^{\circ}$ $\Theta_{out} = 5.9^{\circ}$ angular acceptances: $\Delta\Omega_{in} = 1 \mu rad$ $\Delta\Omega_{out} = 5 \mu rad$ footprint: 3 mm

Crystal monochromators

A light for Science

- Fixed exit double crystal monochromator
- more then one movement necessary

- Channel-cut monochromator
- NOT fixed exit
- - naturally aligned
- weak link plus piezo movement for detuning etc.

ESRF

Crystal monochromators

A light for Science

beam splitter monochromators

Figure 2.7. Layout of the optical elements of ID30A in OH2. (1) represents a vertically focusing white beam Compound refractive lens (CRL), (2) (111)-cut diamond monochromators, (3) a Si(111) monochromator and (4) horizontal focusing multilayer. The high power primary slits are located in the first optical hutch (OH1).

two times one-dimensional focussing

Source often very asymmetric: horizontal dimension >> vertical dimension

Multilayer laboratory:

Manufacturing: single layer mirrors, multilayer monochromators, focusing optics

New machine since 2008

- Magnetron sputtering
- 4 fixed sources
- Moving substrates
- Max size: 1000x150x100 mm³
- Sputter rates: 0.1...0.5 nm/s
- Baking / annealing furnace

ML monochromators

Multilayer high flux double monochromators (white beam)

- Two bounce optics
- 100x larger bandwidth compared with Si(111) \rightarrow ~100x more flux
- Radiation and heat load issues !

X-ray focussing - several ways/devices

Diffractive "lenses"

X-ray Reflectors

Ce

Focusing Optics for Hard X-rays (E > 6 keV)

		reflect	diffractive	refractive			
	Kirkpatrick Baez systems		z Capillaries Wa		Fresnel Zone plates	Refractive lenses	
mirrorsmultilayersKirkpatrickUnderwoodBaez, 1948Barbee, 1986		Kreger 1948	Feng et al 1993	Baez 1952	Snigirev et al, 1996		
Energy	< 30 keV	< 80keV	< 20keV	< 20keV	< 30 keV (80)	<1 MeV	
Bandwidth ΔE/E	w. b.	10 ⁻²	w.b.	10 ⁻³	10 ⁻³ - 10 ⁻⁴	10 ⁻³	
resolution	25 nm @20keV Mimura 2009 7 nm	41x45nm² @24keV Hignette 2006	50 nm Bilderback 1994	40x25 nm ² Salditt 2004	30 nm @20 keV Kang, 2006 17 nm, 2007	50 nm@ 20keV Schroer, 2004 150nm@ 50keV Snigirev,2006	
	1-D! 2-D	50-80nm		17	nm ML Laue len	A. Snigirev	

Current best focusing performance

Present top and standard values

ht for Science

```
1-dim: mainly for demonstration
             top value 7nm (1/2 KB)
2-dim: 2 to 3 times smaller
For real "routine" work 30-80nm
But not only spot size is important,
photon flux in the spot is crucial (scanning time)
             10^7 s^{-1} poor, 10^{12} s^{-1} fine
```


More or less all systems are used at ESRF beamlines

However two are most popular:

Refractive lenses

KB systems

Kirkpatrick-Baez (KB) focusing devices

- Separate vertical and horizontal focusing (non-circular source)
- Technologically easier than single reflection ellipsoid
- Metal (single layer (mirror)) or graded ML coatings

<u>_____</u>

Kirkpatrick-Baez (KB) focusing devices

Albert V. Baez was the father of Joan Baez !

P. Kirkpatrick, A.V. Baez, J. Opt. Soc. Am. 38, 766 (1948)

Kirkpatrick-Baez system at the ESRF

ESRF: O. Hignette *et al.,* 2007: <u>40nm</u> Spring 8: H. Mimura *et al.* 2007: <u>25nm</u> Spring 8: H. Mimura *et al.* 2009: <u>7nm</u>

microfocus on ID19 (20.5 keV)

Aperture	Focus Size	Flux
VXH(µm)	FWHM (nm)	Ph/s@90mA
200 X 50	92 X 87	5 10 ¹⁰
400 X 100	70 X 74	2 10 ¹¹
600 X 160	90 X 70	4.5 10 ¹¹

Kirkpatrick Baez focus plane analysis at 20.5 KeV (raw data)

CRL transfocator

Limits in X-ray focusing

Nanometer scale is of interest

Chemical Composition of a Comet Tail particle

Phytoextraction in hyper accumulator plants

Green and low cost strategy for soil cleaning

Mechanisms of metal accumulation ?

µ-XRF in Trichomes of Arabidopsis Thaliana

 E_{ex} : 5.8 keV, probe size: 0.3x0.2 μ m², dwell time: 800 ms/pixel.

M.P. Isaure et al., Biochimie 88 (2006)

Cs accumulation in Arabidopsis Thaliana

E_{ex}: 5.8 keV, probe size: 0.2x0.2µm², dwell time: 800 ms/pixel

M.P. Isaure et al., Biochimie 88 (2006)

After 4 day-exposure to various concentrations of Cs and K

- Cs toxicity → interactions with intracellular K-binding protein sites
- A monitored application of Potassium
 - ✓ alleviate the Cs toxicity (phytotoxicity)

✓ increase the Cs accumulation (phytoextraction)

M.P. Isaure et al., Biochimie 88 (2006)

The Future of the ESRF Looks Bright

