

Reconstruction of Vectorial Protein ⁴ Folding Pathways by Atomic Force Microscopy and Molecular Dynamics Simulations

Piotr E. Marszalek Center for Biologically Inspired Materials and Material Systems Department of Mechanical Engineering and Materials Science Duke University Box 90300 Durham, NC 27708 pemar@duke.edu http://smfs.pratt.duke.edu/homepage/lab.htm

"Can we predict how proteins will fold?"

This question was listed in 2005 as one of the 125 most important unsolved problems in science by the *Science* magazine

So much more to know.... *Science* 309, 78-102 (2005).

Atomic-Level Characterization of the Structural Dynamics of Proteins

David E. Shaw,^{1,2}* Paul Maragakis,¹† Kresten Lindorff-Larsen,¹† Stefano Piana,¹† Ron O. Dror,¹ Michael P. Eastwood,¹ Joseph A. Bank,¹ John M. Jumper,¹ John K. Salmon,¹ Yibing Shan,¹ Willy Wriggers¹

SCIENCE VOL 330 15 OCTOBER 2010

341

Fig. 1. Folding proteins at x-ray resolution, showing comparison of x-ray structures (blue) (*15, 24*) and last frame of MD simulation (red): (**A**) simulation of villin at 300 K, (**B**) simulation of FiP35 at 337 K. Simulations were initiated from completely extended structures. Villin and FiP35 folded to their native states after 68 μs and 38 μs, respectively,

and simulations were continued for an additional 20 µs after the folding event to verify the stability of the native fold.

Part I

Combining AFM-based single-molecule force spectroscopy (SMFS) with steered molecular dynamics simulations to examine vectorial folding of proteins

Part II

Developing protein-based SMFS probes for characterizing the strength of protein-protein interactions

Part III

Creating novel protein constructs with unusual folding and mechanical properties and engineering protein based materials

Overview of Proteins Structure

Protein Myoglobin

Amino acid

Show Translation Movie

Primary, secondary, tertiary and quaternary structure

Protein Folding "Problem" How do proteins acquire their unique 3D structures?

-Levinthal's paradox $(3^{100} \times 10^{-15} \text{ s})$

- Anfinsen's thermodynamic hypothesis Native, unique structure corresponds to the minimum of the free energy
 uniquness
- •stability
- •kinetical accessibility (energy funnel)

-Folding in vitro vs in vivo; cotranslational folding?

Nascent Polypeptide Chain (NPC)

Cabrita, Hsu, Launay, Dobson, Christodoulou. 2009. PNAS 106, 22239–22244.

> Exit tunnel: 10 nm long 1-2 nm wide, accomodates 30 aa in the extended conformation, up to 60 aa $(\alpha -helix)$

> > Kramer, Boehringer, Ban, Bukau. (2009). NAT. STRUCT. & MOL. BIOL. 16, 589.

Trigger Factor (TF)

NPC

Cabrita, Hsu, Launay, Dobson, Christodoulou. 2009. PNAS 106, 22239–22244.

Probing ribosome-nascent chain complexes produced in vivo by NMR spectroscopy

.....These findings are of particular interest when compared to force-induced mechanical unfolding experiments, which provide an in vitro representation of one form of vectorial folding that could be somewhat analogous to the behavior of an NC as it emerges from the ribosomal tunnel.....

Reversible Unfolding of Individual Titin Immunoglobulin Domains by AFM Matthias Rief, Mathias Gautel, Filipp Oesterhelt, Julio M. Fernandez, Hermann E. Gaub* SCIENCE 276, 16 MAY 1997, pp. 1109-1112

Folding-unfolding transitions in single titin molecules characterized with laser tweezers
Kellermayer, M. S. Z. Smith, S. B. Granzier, H. L. Bustamante, C. SCIENCE 276, 16 MAY 1997, pp. 1112-1116.

Elasticity and unfolding of single molecules of the giant muscle protein titin

L. Tskhovrebova, J. Trinick, J. A. Sleep, R. M. Simmons Nature **387**, 308-312 (15 May 1997)

Sarcomere

PEVK-unstructured Entropic springs

Ig domains

N2B-unstructured Entropic springs

Atomic Force Microscope

Freely jointed chain with segment elasticity

ssDNA polysaccharides

Worm-like chain

ds DNA modular proteins

$$F(x) = \frac{k_B T}{p} \left[\frac{1}{4} \left(1 - \frac{x}{L_{con}} \right)^{-2} - \frac{1}{4} + \frac{x}{L_{con}} \right]$$

Entropic elasticity

Carrion-Vazquez, Oberhauser, Fisher, Marszalek, Li & Fernandez. (2000). *Prog. Biophys. Mol. Biol.* 74, 63-91 (and references cited therein)

Show I27 unfolding animation

Two-state model of protein unfolding/folding

Elastically Coupled Two-Level Systems as a Model for Biopolymer Extensibility

Matthias Rief,¹ Julio M. Fernandez,² and Hermann E. Gaub¹

618 (1978)

Reaction Coordinate (extension)

The I27 domain of titin and its network of backbone hydrogen bonds

Nanomechanics of modular vs repeat (spiral) proteins

titin

Organization of the RBC membrane skeleton

Ankyrin membrane-binding domain: 24 ANK repeats

Nanospring Behavior of Ankyrin Repeats

G. Lee, K. Abdi, Y. Jiang, P. Michaely, V. Bennett & P.E. Marszalek. (2006). Nature 440, 246-249.

Consensus Ankyrin (NI6C) flanked by six I27 modules

Svava K. Wetzel, Giovanni Settanni, Manca Kenig, H. Kaspar Binz and Andreas Plückthun. *J. Mol. Biol.* (2008) 376, 241–257. 8 Ankyrin repeats 253 aa Stretched length ~ 92nm

Lee , Zeng, Zhou, Bennett, Yang, Marszalek. (2010). J Biol Chem 285, 38167-38172.

Cyclic stretch-relax measurements

Protein mechanics und unfolding can be studied by compute simulations (molecular dynamics)

An Introduction to Molecular Dynamics Simulations

Macroscopic properties are often determined by molecule-level behavior.

Quantitative and/or qualitative information about macroscopic behavior of macromolecules can be obtained from simulation of a system at atomistic level.

Molecular dynamics simulations calculate the motion of the atoms in a molecular assembly using Newtonian dynamics to determine the net force and acceleration experienced by each atom. Each atom i at position r_i , is treated as a point with a mass m_i and a fixed charge q_i .

<u>www.ks.uiuc.edu</u>

Professor Klaus Schulten, Univ. of Illinois, Urbana-Champaign

 U_{bond} = oscillations about the equilibrium bond length U_{angle} = oscillations of 3 atoms about an equilibrium angle $U_{dihedral}$ = torsional rotation of 4 atoms about a central bond $U_{nonbond}$ = non-bonded energy terms (electrostatics and Lenard-Jones)

MD: Verlet Method

Energy function: $U(\vec{r}_1, \vec{r}_2, \cdots, \vec{r}_N) = U(\vec{R})$

used to determine the force on each atom:

$$m_i \frac{d^2 \vec{r_i}}{dt^2} = \vec{F_i} = -\vec{\nabla} U(\vec{R})$$

Newton's equation represents a set of N second order differential equations which are solved numerically at discrete time steps to determine the trajectory of each atom.

$$\vec{r}_i(t + \Delta t) = 2\vec{r}_i(t) - \vec{r}_i(t - \Delta t) + \frac{\Delta t^2}{m_i}\vec{F}_i(t)$$

Steered Molecular Dynamics

$$U_{tot} = U_{internal} + U_{harmonic (AFM)}$$

$$U_{harmonic} = \frac{1}{2} k \left[vt - \left(\vec{r} - \vec{r_o} \right) \cdot \vec{n} \right]^2$$

Go-Like Model : Structure-based Model Weitao Yang's group

- Onuchic's Go Model
 - Clementi C, Nymeyer H & Onuchic JN (2000)
 "Topological and energetic factors: What determines the structural details of the transition state ensemble and En-route intermediates for protein folding? An Investigation for small globular proteins." *J. Mol. Biol.* 298, 937-953.
 - http://sbm.ucsd.edu/cgibin/GenTopGro.pl

$$E(\Gamma, \ \Gamma_0) = \sum_{\text{bonds}} K_r(r - r_0)^2 + \sum_{\text{angles}} K_{\theta}(\theta - \theta_0)^2 + \sum_{\text{dihedral}} K_{\phi}^{(n)} [1 + \cos(n \times (\phi - \phi_0))] + \sum_{i < j - 3} \left\{ \varepsilon(i, j) \left[5 \left(\frac{\sigma_{ij}}{r_{ij}} \right)^{12} - 6 \left(\frac{\sigma_{ij}}{r_{ij}} \right)^{10} \right] \right\}$$
Native cont.
$$+ \left[\varepsilon_2(i, j) \left(\frac{\sigma_{ij}}{r_{ij}} \right)^{12} \right\}$$

Non-native cont.

NI6C contact map during unfolding and refolding

Count of native contacts in α -helical domains (H1 and H2) in the N-terminus, C- terminus, and internal repeats of NI6C

Domain	Sequence*	# of residues	# Of contacts†
N-terminal	Asp7 - Gln30	24	85
C-terminal	Thr241 - Gln259	19	70
Internal	Thr109 - Ala129	21	129

Vectorial unfolding of Consensus Ankyrin Repeats

Vectorial Refolding of Consensus Ankyrin Repeats

Structures and functions of repeat proteins

Crystal	Protein	Biological function	Type of Repeat	Occurence in H. sapeins	Additional examples bearing repeats
EEEEEEEEEEEEEEEEEEEEE	ANKYRIN-R D13-24	Membrane adaptor for transmembrane localization	ANK REPEAT	3338	Ankyrin-1,2,3 BCL3 p19ink4d Notch IkappaBalpha
ૡ૾ૡ૾ ૡૡૺૡૺૡૡૺૡૢૡ	CLATHRIN HEAVY CHAIN	Formation of small vesicles for intracellular transport	HEAT REPEAT	267	PP2A, subunit A Importin beta-2 Integrator complex subunit 4 Ran binding protein 5 Tbp-associated factor 172
	BETA-CATENIN	Plasma membrane adaptor for E-cadherin and transcriptional cofactor during development	ARM REPEAT	357	Importin subunit alpha-1-7 alpha & gamma catenin Plakoglobin APC tumor suppressor protein Importin subunit beta-1
	RIBONUCLEASE INHIBITOR	Inhibition of RNAse molecules	LEUCINE-RICH REPEAT	1745	Leucine rich repeat shoc-2 Toll like receptor 1,5 Slit homolog protein 2 Insulin like growth factor 1 G-protein coupled receptor 67

A Mechanical Properties of Repeat Proteins

Part I CONCLUSIONS

Vectorial, sequential folding may be a common feature of alpha helical stacked repeat proteins

Native contacts topology dictates folding pathways of ankyrin repeat proteins

Ankyrin repeat proteins fold via nucleation of several repeats (nucleation may depend on the residual structure in the unfolded chain)

AFM refolding of repeat proteins occurs under 1D constraints, therefore it may reproduce the folding of the Nascent Polypeptide Chain

Protein reference force probes with strong and weak modules

Wang, C-C., Tsong, T-Y., Hsu, Y-H., Marszalek, P.E. (2011). Inhibitor Binding Increases the Mechanical Stability of Staphylococcal Nuclease. Biophysical J. 100: 1094-1099.

Acknowledgements

Columbia University Julio M. Fernandez UBC/Vancouver Hongbin Li

Cajal Institute **Mariano Carrion-Vazquez** University of Texas, Galveston **Andres F. Oberhauser**

Mayo Clinic

Yuan-Ping Pang

Nicholaus Copernicus University

Wiesław Nowak Univ. of Illinois, Urbana-Champaign Klaus Schulten UNC/Chapel Hill

Piotr A. Mieczkowski

Duke /*Chemistry* Weitao Yang Zhenyu Lu Xiancheng (Fox) Zeng Florida State University Huan-Xiang Zhou Duke/Biochemistry Paul Modrich Celia Baitinger

Duke/Cell Biology

Vann Bennett Khadar Abdi

NC State/Biochemistry

Hanna Gracz

PEM Lab: Gwangrog Lee, Qingmin Zhang,, Changhong Ke, Michael Humeniuk Yong Jiang, Whasil Lee, Minku Kim, Mahir Rabbi, Anna Loksztejn

NSF: MCB-0450835 and 0717770, NIH: GM071197, GM079563